Tuesday, April 4, 2023

Indoor positioning system

From Wikipedia, the free encyclopedia
For broader coverage of this topic, see Positioning system.
An indoor location tracking map on a mobile phone

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.[1]

A large variety of techniques and devices are used to provide indoor positioning ranging from reconfigured devices already deployed such as smartphones, WiFi and Bluetooth antennas, digital cameras, and clocks; to purpose built installations with relays and beacons strategically placed throughout a defined space. Lights, radio waves, magnetic fields, acoustic signals, and behavioral analytics are all used in IPS networks.[2][3] IPS can achieve position accuracy of 2 cm,[4] which is on par with RTK enabled GNSS receivers that can achieve 2 cm accuracy outdoors.[5] IPS use different technologies, including distance measurement to nearby anchor nodes (nodes with known fixed positions, e.g. WiFi / LiFi access pointsBluetooth beacons or Ultra-Wideband beacons), magnetic positioningdead reckoning.[6] They either actively locate mobile devices and tags or provide ambient location or environmental context for devices to get sensed.[7][8][9] The localized nature of an IPS has resulted in design fragmentation, with systems making use of various optical,[10] radio,[11][12][13][14][15][16][17] or even acoustic[18][19] technologies.

IPS has broad applications in commercial, military, retail, and inventory tracking industries. There are several commercial systems on the market, but no standards for an IPS system. Instead each installation is tailored to spatial dimensions, building materials, accuracy needs, and budget constraints.

For smoothing to compensate for stochastic (unpredictable) errors there must be a sound method for reducing the error budget significantly. The system might include information from other systems to cope for physical ambiguity and to enable error compensation. Detecting the device's orientation (often referred to as the compass direction in order to disambiguate it from smartphone vertical orientation) can be achieved either by detecting landmarks inside images taken in real time, or by using trilateration with beacons.[20] There also exist technologies for detecting magnetometric information inside buildings or locations with steel structures or in iron ore mines.[21]

Applicability and precision[edit]

Due to the signal attenuation caused by construction materials, the satellite based Global Positioning System (GPS) loses significant power indoors affecting the required coverage for receivers by at least four satellites. In addition, the multiple reflections at surfaces cause multi-path propagation serving for uncontrollable errors. These very same effects are degrading all known solutions for indoor locating which uses electromagnetic waves from indoor transmitters to indoor receivers. A bundle of physical and mathematical methods are applied to compensate for these problems. Promising direction radio frequency positioning error correction opened by the use of alternative sources of navigational information, such as inertial measurement unit (IMU), monocular camera Simultaneous localization and mapping (SLAM) and WiFi SLAM. Integration of data from various navigation systems with different physical principles can increase the accuracy and robustness of the overall solution.[22]

--
You received this message because you are subscribed to the Google Groups "1TopReadys1" group.
To unsubscribe from this group and stop receiving emails from it, send an email to 1topreadys1+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/1topreadys1/CAForgrRRbFv_CqprhV%2BOhcM2OuQ_2pypicVrRx88LsYypfXEaQ%40mail.gmail.com.

No comments: